If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+40x-1=0
a = 4; b = 40; c = -1;
Δ = b2-4ac
Δ = 402-4·4·(-1)
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{101}}{2*4}=\frac{-40-4\sqrt{101}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{101}}{2*4}=\frac{-40+4\sqrt{101}}{8} $
| 12y+18=6y+9 | | 11k-6k-4K=8 | | 3(17-4)=7y-20 | | x4+7=-2x+4 | | 6a-7=5a+3 | | (2x+1)=135 | | 3(1+7k)+3(k-2)=45 | | 5/w=5.2 | | 98x-14=14(7x-1) | | x/4=x+7/8 | | 1/3(9x+3)=3x+1 | | 9d-6d=42 | | 10-2j=70 | | 6x-3(-3x+2)=-24+6 | | 3/5x-1-10x=1/2x+1 | | -2+1=4x+9 | | 9n+5n-14n+2n=20 | | x+9=5x-35 | | -83=-6(v+6)+1 | | 34x+20=34x+75 | | 2w+2w+2=29 | | 301=-7(-6a-5) | | 8x+38=-3(-6+4x) | | 3(2x+9)=-31+10 | | 2(x+12)=3x=24-x | | 9v-31=-8(v+6) | | 36=1/2n+n | | 3x+14+4x-9=90 | | -4(x-2)+15=-10 | | 5(-6x+3)=-8(-5-3) | | X²+9=6x | | 196+2x=180 |